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The percolation phenomenon of conductive-insulating
composites has been extensively studied because of their
wide applications in the electronic industry [1–7]. Such
materials possess special physical properties different
from metals, for example the thermal conductivity of
conductive polymers is lower, the wear resistance of con-
ductive ceramics is higher. Conductive-insulating com-
posites can be made by dispersing conductive particles
into the melt of an insulating matrix, such as a polymer
[1–3], by thermal pressing of a mixture of conductive-
insulating powders, such as metal and ceramic powders
[4–6], and by growing a thin film on a substrate [7]. In
such a material, when the volume fraction of the con-
ductive powders is lower than a critical valve, it behaves
as an insulator; as the volume fraction of the conductive
powders reaches the critical valve, its electrical conduc-
tivity sharply increases by several orders of magnitude.
This critical valve is referred to as the percolation thresh-
old at which a conductive network is formed to span the
entire cross section of the body of the material. For ma-
terials with crystal structures, such as simple cubic, body
centered cubic (BCC) and face centred cubic (FCC) lat-
tices, the exact or very accurate values of the percolation
thresholds have been obtained by theoretical analysis or
by computer simulation. For example, the site percola-
tion threshold is about 0.3116 for the simple cubic lattice
and is about 0.246 for the BCC lattice [8]. However, for
composites with amorphous structures, such as a com-
pact of a mixture of conductive-insulating powders, only
experimental data and simplified analytical models are
available.

Using a Monte Carlo simulation model, we studied the
percolation behavior of such granular composites with
amorphous structure. In this letter we briefly review the
simulation model first; then we report our simulation re-
sult on conductive and insulating powders with equal par-
ticle size. The assumptions made in this study are that the
particles have spherical shape and are rigid so that overlap
is not allowed. For convenience, the particle diameter is
set to one unit.
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The simulation model is composed of two parts. The
first part is the generation of the composite structure using
a random particle-packing model. Initially the particles
are randomly generated within a cubic space with high
packing density and overlaps. Then a relaxing procedure
is applied to reduce or eliminate the overlaps; meanwhile,
the cubic space is slightly expanded depending on the
overlap situation. By repeating the relaxation and expan-
sion procedures, overlap free random packing can be fi-
nally obtained. In the second part, for a given conductive
volume fraction ϕ we randomly sample nc = ϕn con-
ductive particles in the random packing; we then apply a
from-neighbour-to-neighbor propagation method to count
the conductive particles belonging to the same cluster and
the number of clusters in the packing; finally we check
if there exists a percolating cluster that spans the packing
space in a given direction. It is a feature of this simulation
model that neighbouring particles are either slightly over-
lapped or separated, if the gap between two particles is
smaller than 0.005, we consider they contact each other.
Fig. 1 shows the three-dimensional view of the random
packing of one thousand particles and the projection of
the largest conductive cluster on the x−z plane that spans
the packing space in the z direction. Details of the simu-
lation model and cluster identification method are given
in [9 , 10].

In the simulation we employed n =1,000, n = 5,000
and n = 20,000 particles respectively. With a given value
of ϕ, in each case we randomly took 10,000 samples
by repeating the second part of the simulation model,
and then counted the percentage G ′(ϕ) of those in which
there existed percolating clusters. The values of G ′(ϕ) in
the x, y and z directions were counted respectively and
then averaged, thus the average value of G ′(ϕ) was cal-
culated from 30 000 samples, which could be taken as
the percolation probability at ϕ. Fig. 2 shows G ′(ϕ) as
a function of ϕ. In infinite systems, n → ∞, G ′(ϕ) = 0
as ϕ < ϕc, and G ′(ϕ) = 1 as ϕ ≥ ϕc, where ϕc is the
percolation threshold. However, for finite systems G ′(ϕ)
is a probability depending on the system size n and the
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Figure 1 Views of the random packing and the percolating cluster, n =
1000, ϕ = 0.287.

volume fraction ϕ, and as ϕ increases G ′(ϕ) gradually ap-
proaches one. For finite three-dimensional systems with
a free boundary at percolation threshold ϕc, it has been
shown that G ′(ϕc) = 0.28 ± 0.01 which is independent
of the particle arrangement and the system size n [11].
Fig. 2 shows that, for random packings with system sizes
n = 5000 and n = 20 000, the percolation probabilities
also cross at G ′(ϕ) = 0.286, which is in excellent agree-
ment with 0.28 ± 0.01. Fig. 2 also shows our simulation
results on simple cubic lattices. In Fig. 2, correspond-
ing to G ′(ϕc) = 0.286 we can estimate that the percola-
tion threshold ϕc of the random packing is about 0.285.
For a simple cubic lattice the site percolation threshold
ϕc = 0.3116 with packing density about 0.524, and for a
BCC lattice ϕc = 0.246 with packing density about 0.680.
The random packing density we obtained is about 0.630
which falls between the simple cubic and BCC packing
densities, thus it is expected that the percolation threshold
should also fall between the simple cubic and BCC site
percolation thresholds, 0.3116 and 0.246. From the above
argument one can conclude that a value around 0.285 is a
reasonable estimation of ϕc for random packing. It should
be mentioned that the packing density we obtained ap-
proaches the close random packing density 0.633 [12 ],
for random loose packing with density around 0.6 the

Figure 2 Percolating probability G′(ϕ) as function of ϕ.

Figure 3 Virtual-percolation threshold ϕc as function of gap δ.

percolation threshold should be higher than 0.285 but still
lower than 0.3116.

The above percolation threshold ϕc = 0.285 was ob-
tained under the condition that the particles belonging to
the same cluster must contact each other. However, lower
percolation thresholds and nonlinear voltage–current (V-
I) characteristics have been observed in conductive-
insulating composites [7, 13, 14]. This is distinguished
from the above definition and we call it the virtual-contact
percolation threshold. For a composite with nanosize con-
ductive particles dispersed in a continuum-insulating ma-
trix, this is due to the tunneling of single electrons be-
tween neighboring particles. A simple geometrical model
shows that, at a constant volume fraction, the average gap
between neighboring particles decreases with decreasing
particle size [15]. Thus, as the gap becomes sufficiently
small the electron can overcome the Coulomb charging
energy and the onset of conduction occurs. For compos-
ites with particles of micro-size or larger, one of the ex-
planations of the lower percolation threshold is due to the
dielectric breakdown between the neighboring particles
[14]. In such composites there exist no real percolating
clusters. However, when an electric field is applied to the
opposite sides of a specimen, the medium in the gap be-
tween near contact particles belonging to different clusters
will be polarized. As the applied field exceeds the dielec-
tric breakdown limit the onset of conduction occurs. Our
simulation provides detailed structural information that
allows the prediction of the noncontact percolation thresh-
old. We set a limit δ such that when the gap between two
conductive particles is smaller than δ, we consider then
to virtually contact each other. Thus, applying the second
part of the simulation model, we can estimate the percola-
tion threshold ϕc at a given value of δ. Fig. 3 shows ϕc as
a function of δ, from which we see that as δ increases to
0.2, ϕc drops to about 0.224. At constant volume fraction
ϕ, we also found that the size of the virtual-percolating
cluster increases with the dielectric breakdown gap δ. This
implies that as the applied voltage increases more conduc-
tive particles will carry current, which leads to a drop in
the electrical resistance of the percolating cluster resulting
in the nonlinear V–I characteristics.

In summary, Monte Carlo simulation has been ap-
plied to study the percolation phenomenon of conductive-
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insulating granular composites with amorphous struc-
ture. Results show that the percolation threshold ϕc of
such composites falls between the simple cubic and BCC
percolation thresholds. Results also provide quantitative
structure information that can be used to explain the non-
linear V–I characteristic of composites at lower virtual-
percolation threshold. Conductive-insulating composites
are widely used in electronic and semiconductor indus-
tries. Our work provides a window for material design to
obtain desirable physical properties.
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